Pulling on super paramagnetic beads with micro cantilevers: single molecule mechanical assay application.
نویسندگان
چکیده
This paper demonstrates that it is possible to trap and release a super paramagnetic micro bead by fixing three super paramagnetic micro beads in a triangular array at the sensitive end of a micro cantilever, and by simply switching on/off an external magnetic field. To provide evidence of this principle we trap a micro bead that is attached to the free end of single DNA molecule and that has been previously fixed at the other end to a glass surface, using the standard sample preparation protocol of magnetic tweezers assays. The switching process is reversible which preserves the integrity of the tethered molecule, and a local force applied over the tethered bead excludes the neighbouring beads from the magnetic trap. We have developed a quadrature phase interferometer which is able to perform under fluid environments to accurately measure small deflections, which permits the exploration of DNA elasticity. Our results agree with measurements from magnetic tweezer assays performed under similar conditions. Furthermore, compared to the magnetic tweezer methodology, the combination of the magnetic trap with a suitable measurement system for cantilever deflection, allows for the exploration of a wide range of forces using a local method that has an improved temporal resolution.
منابع مشابه
Numerical Modeling of the Shear Module of Alginate Micro-Beads under the Ultrasonic Thermal Effect
The mechanical properties of microscopic particles have been a heated research object for it takes the deformation of micro-beads in the microfluidic environment into account. Sufficient knowledge on mechanical properties of micro-beads would lead to better device design and application for cell mechanics, tissue engineering, etc. The physical properties of alginate beads were examined both in ...
متن کاملModelling, control and simulation of a micro electro-mechanical actuator (MEMS) for micro-gripper operation in DNA manipulation
This project deals with the modelling, control and simulation of a micro electro-mechanical actuator for micromechatronical tweezers in DNA-manipulation processes. I. THE MICRO-MECHATRONICAL PROCESS The manipulation of biological molecules by using micromechanical and optical devices such as: magnetic tweezers [1], [2], optical tweezers [3], AFM cantilevers [4] and microfibers [5], [6], are now...
متن کاملIntegrin-mediated mechanotransduction in renal vascular smooth muscle cells: activation of calcium sparks.
Integrins are transmembrane heterodimeric proteins that link extracellular matrix (ECM) to cytoskeleton and have been shown to function as mechanotransducers in nonmuscle cells. Synthetic integrin-binding peptide triggers Ca(2+) mobilization and contraction in vascular smooth muscle cells (VSMCs) of rat afferent arteriole, indicating that interactions between the ECM and integrins modulate vasc...
متن کاملExperimental and Computational Characterization of Biological Liquid Crystals: A Review of Single-Molecule Bioassays
Quantitative understanding of the mechanical behavior of biological liquid crystals such as proteins is essential for gaining insight into their biological functions, since some proteins perform notable mechanical functions. Recently, single-molecule experiments have allowed not only the quantitative characterization of the mechanical behavior of proteins such as protein unfolding mechanics, bu...
متن کاملA multiplexed magnetic tweezer with precision particle tracking and bi-directional force control
Background In the past two decades, methods have been developed to measure the mechanical properties of single biomolecules. One of these methods, Magnetic tweezers, is amenable to aquisition of data on many single molecules simultaneously, but to take full advantage of this "multiplexing" ability, it is necessary to simultaneously incorprorate many capabilities that ahve been only demonstrated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical biology
دوره 12 4 شماره
صفحات -
تاریخ انتشار 2015